
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:845–875
Published online 4 July 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1556

Extension of some numerical schemes to the analysis of gas and
particle mixtures

J. R. Garcı́a-Cascales1,∗,†, J. Mulas-Pérez1 and H. Paillère2
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SUMMARY

In this paper, several numerical schemes are extended to obtain approximate solutions to the system of
equations encountered in the analysis of multiphase mixtures of gas and particles. Both dense and dilute
mixtures are studied, the gas is modelled as a perfect gas and the solid is considered incompressible.
Although the tests employed throughout this work for studying the behaviour of the schemes are essentially
one dimensional, the finite volume method developed permits its application to multidimensional problems
in unstructured grids. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Solid particles and gas mixtures are encountered in many industrial applications such as fluid
catalytic crackers, fluidized bed combustors, ventilation systems and so forth. In certain fields—
for example, agricultural, chemical, metallurgical or nuclear industry—special interest has been
paid to these mixtures because of safety reasons. Problems related to dust mobilization or dust
combustion have become fundamental issues due to the existing risks for population and for other
nearby facilities.

In nuclear fusion, the amount of dust inside a tokamak as the ITER is limited due to the
problems which may cause in the plasma and second because a loss of vacuum or an air ingress
accident could cause that radioactive products abandon the vacuum vessel and contaminate the
surrounding area. Even in the case that a loss of coolant took place, hydrogen might be generated
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or a dust deflagration or detonation might occur. The objective of this work is to contribute to
the development of a reliable tool for analysing dust mobilizing problems. In general, the type of
mixture expected to be encountered inside the vacuum vessel of a fusion reactor is polydispersed
and belongs to the high-dilute mixtures although, here, dense mixture models have also been
considered in order to study the cases in which particle–particle interaction is also important.

The way of modelling these problems depends on several factors such as the application con-
sidered, the type of particles and their size, the interaction between the phases and the internal
reactions or the problem geometry. The sort of problem faced in each case determines which
model is chosen. As such, great efforts have been made in order to find proper physical models
capable of characterizing each particular dust and gas mixture and, also, of developing suitable
numerical schemes for the solution of the resulting systems of equations. With regards to the
physical models, Gidaspow’s model, [1] and its subsequent reviews stand out from other models.
In the detonation-to-deflagration of dusty gas the Baer–Nunziato model [2] and its recent reviews
[3] are applicable.

Throughout this work, some numerical schemes for the analysis of dust and gas mixtures are
proposed. In particular, AUSM+up and Rusanov schemes have been extended depending on the
case. As the other members of the AUSM family of schemes, the AUSM+up scheme has some
characteristics which make it quite an appealing scheme [4]:

• They do not require any characteristic analysis or field-by-field decomposition.
• They have the ability to capture steady contact discontinuities exactly.
• They have the capability of being easily adaptable to different flow models such as compress-

ible and near incompressible flows.
• They require less CPU than most Godunov-type solvers per flux evaluation.

In their application, this paper takes advantage of the simplifications that the different approaches
allow. It has been organized as follows. Firstly, the general system of equations for dust and gas
mixtures is presented. Then, the assumptions adopted throughout this paper and the systems of
equations for each level of approximation studied are described: i.e. dense, dilute and high-dilute
mixtures. The mathematical nature of the aforementioned systems and some possible numerical
schemes, most of which are extensions of the AUSM+up scheme [5], are introduced to solve them.
Finally, the behaviour of these schemes is tested with some numerical problems. Following this,
some conclusions are drawn.

2. SYSTEM OF EQUATIONS

The system of equations which characterizes a two-phase mixture of particles and gas in the Baer–
Nunziato model is given by a set of three balance equations for mass, momentum and energy of
each phase. This is completed by a seventh equation which accounts for the particle compaction
which provides the time evolution of the particle volume fraction. This model considers two
different pressures for the phases and is given by

��g�g

�t
+ ∇ · (�g�gug) = �g

��g�gug

�t
+ ∇ · (�g�gug ⊗ ug + �g pg Ī ) = pg∇�g + Fdg + �mg
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��g�gEg

�t
+ ∇ · (�g�gugHg + �g pg Ī ) = −pg

��g
�t

+ Fdg · up + Qg + �eg

��p�p

�t
+ ∇ · (�p�pup) = −�g (1)

��p�pu p

�t
+ ∇ · (�p�pup ⊗ up + �p pp Ī ) = pp∇�p − Fdg + �mp

��p�pEp

�t
+ ∇ · (�p�pupHp + �p pp Ī ) = −pp

��p

�t
− Fdg · up − Qg + �ep

��p

�t
+ up · ∇�p = �g�p

�c
[pp − pg − �p] + �g

�p

where ek is the phase specific internal energy, Ek the total internal energy of phase k, Ek = ek +
|uk |2/2, Fdk the drag force, hk the specific enthalpy, Hk the total enthalpy of phase k, Hk = hk +
|uk |2/2, pk the pressure, Q the interfacial convective heat transfer, t the time, uk the velocity,
�k the phase volume fraction (�g + �p = 1), �k the configuration pressure and �m and �e the
other momentum and energy source terms, respectively. They account for interfacial exchanges of
momentum and energy, other external forces interactions (shear stress, Reynolds stress and so on),
internal energy generation and so forth.

In Equation (1), �g is the interfacial mass exchange due to phase change, chemical reactions,
etc., �c the dynamic compaction viscosity and �k the phase density.

Subscripts and superscripts: k is a general phase, g the gas phase and p the solid or particle
phase.

Particle–particle interaction is negligible in dilute gas–particle flows. It is only when the particle
concentration becomes higher that the particles collide with each other and lose kinetic energy. In
dense flows, the force on the particles due to shear stress in the continuum phase is traditionally
neglected and a term is added to the particle momentum equation characterizing the particle–particle
interaction [6], this is

��p�pu p

�t
+ ∇ · (�p�pup ⊗up + �p pp Ī ) = pp∇�p − G∇�p − Fdg + �mp (2)

where G is the solid stress modulus which characterizes this effect and is obtained from empirical
correlations. Different approaches can be found in the existing literature, Tsuo and Gidaspow who
used this model for the study of circulating beds [7], and Harris and Crighton who proposed a
simple model for the stress modulus [8]:

G = Ps
�p,0

�p,0 − �p
(3)

where �p,0 the maximum solid volume fraction. Similar approaches can be found in Combe and
Hérard [9], Krispin and Collins [10], Toro [11], Rogue et al. [12], and Saurel et al. [13]. Instead
of adding this term, some authors include this effect in the solid pressure by means of a stress
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tensor in such a way that

pp = pg + T̃ (4)

where T̃ is a stress tensor which represents the particle–particle interaction.
When a high-dilute mixture is considered, System (1) can be simplified, assuming:

• Particle volume fraction can be neglected against gas volume fraction, so in the gas system
of equations �g � 1 is assumed.

• Pressure effect is negligible in the particle phase so pressure disappears from the particle
system of equations, whereas both systems remain coupled only by the source terms.

• Solid phase is considered incompressible and its system of equations is written in terms of
the particle concentration � = �p�p.

In what follows, particles are assumed to be spherical and only gravitational force, interfacial
friction and convective heat transfer between the phases are included in the model. Thus, the
system of equations (1) is reduced to

��g

�t
+ ∇ · (�gug) = 0

�
�t

(�gug) + ∇ · (�gug ⊗ ug + p) = �gg + Fdg

�
�t

(�gEg) + ∇ · (�gugHg) = �gug · g + Fdg · up + Qg

��

�t
+ ∇ · (�up) = 0

�
�t

(�up) + ∇(�up ⊗up) = �g − Fdg

�
�t

(�Ep) + ∇ · (�upEp) = �up · g − Fdg · up − Qg

(5)

where g is the gravity vector, Ep is the total internal energy of the particle, given by Ep = cmTp +
|up|2/2, and cm is the particle specific heat at constant volume. The closure relationships are defined
in the following sections depending on the test. A direct consequence of these simplifications is
the modification of the mathematical structure of System (1) as the sub-system corresponding to
the particles is degenerate hyperbolic (system of equations (5)).

In all the tests studied below, the gas phase is modelled as a perfect gas:

�g = p

(�g − 1)eg
(6)

where �g is the specific heat ratio of the gas phase. However, when the flow is considered isentropic,
it is modelled by means of the following equation:

�g =
( p

�

)1/�g
(7)

where � has pressure units.
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Other approximations of System (1) may be found in the existing literature, many of them include
turbulence models, reactions, collisions, coalescence and other interactions whose consideration is
beyond the scope of this model.

3. NUMERICAL SCHEMES

In this section, the extension of some numerical schemes is studied. The finite volume method
employed is briefly described and several schemes are proposed to solve the different approxima-
tions of the problems introduced. A second-order version based on variable extrapolations is also
suggested.

3.1. Finite volume method

The system of equations (5) may be written in vector form as

Ut + ∇ · H(U )= S(U ) (8)

where U is the conserved variable vector and H=[F G H ] the flux tensor. The integration of
the homogeneous part of this system in a control volume � yields

d

dt

∫ ∫ ∫
�
U d� +

∫ ∫
A
H · n̂ dA= 0 (9)

where A is the boundary of � and n̂ is the normal vector to surface A. Taking the first integral
as a time rate of change of the average of the conserved variables U in each control volume and
considering the boundary A formed by N surfaces in such a way that A= ⋃N

s=1 As , Equation (9)
can be written as

dU

dt
+ 1

|�|
N∑

s=1

∫ ∫
As

H · n̂ dA= 0 (10)

By discretizing the time derivative and by approaching the surface integral of the flux by∫∫
As

H · n̂ dA� T−1
s F(TsU )As , a finite volume scheme for multiple dimensions in unstructured

grids is obtained, such that

Un+1
j =Un

j − �t

|�|
N∑

s=1
T−1
s F(TsU )As (11)

where As is the area of the sth surface which bounds volume �, Ts is the rotation matrix and T−1
s

its inverse.
A common practice is to solve the system of equations by using splitting schemes. Firstly, the

following PDE is solved by means of the above finite volume approach:

Ut + ∇ · F(U )= 0 (12)

with the initial conditions U (x, tn) =Un , and its solution is then used as an initial condition of
the ODE problem:

d

dt
U = S(U ) (13)
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which is usually solved by using a Runge–Kutta method, an explicit or implicit Euler method or
any other available method. A first-order scheme is obtained if the system of Equation (12) is
solved as follows:

Un
j =L�t

s L�t
h Un

i (14)

where L�t
s stands for the integration operator for the source term and L�t

h Un
i stands for the

advection operator. In order to have a second-order scheme, previous operators are applied as

Un
j =L

�t/2
s L�t

h L
�t/2
s Un

i (15)

In this development, explicit unsplit schemes are used, approximating solutions at time n + 1
for the different models by means of

Un+1
j =Un

j − �t

|�|
N∑

s=1
T−1
s F(TsU )As + �t Sn(Un) (16)

3.2. Numerical scheme

In what follows, different schemes are suggested for the models considered along this work,
heavy-laden, dilute and high-dilute mixtures.

3.2.1. Heavy-laden mixtures. In this case, the interaction between particles is important and it is
modelled by means of a pressure interaction term. The AUSM+up scheme [5] has been applied to
estimate the numerical flux corresponding to this type of mixtures of gas and particles. This numer-
ical method is quite robust and works quite well at any speed. With this extension, some spurious
oscillations encountered at certain discontinuities with other numerical schemes are avoided. The
conserved variable vector and the flux vectors are given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��g

��gugx

��gugy

��gugz

��gEg

(1 − �)�p

(1 − �)�pu px

(1 − �)�pu py

(1 − �)�pu pz

(1 − �)�pEp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��gugx

��g(u
2
gx + pg)

��gugxugy

��gugxugz

��gugx Hg

(1 − �)�pu px

(1 − �)�p(u
2
px + pp)

(1 − �)�pu pxu py

(1 − �)�pu pxu pz

(1 − �)�pu px (Ep + pp/�p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��gugy

��gugyugx

��g(u
2
gy + pg)

��gugyugz

��gugyHg

(1 − �)�pu py

(1 − �)�pu pyu px

(1 − �)�p(u
2
py + pp)

(1 − �)�pu pyu pz

(1 − �)�pu py(Ep + pp/�p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��gugz

��gugzugx

��gugzugy

��g(u
2
gz + pg)

��gugz Hg

(1 − �)�pu pz

(1 − �)�pu pzu px

(1 − �)�pu pzu py

(1 − �)�p(u
2
pz + pp)

(1 − �)�pu pz(Ep + pp/�p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

In this approximation, S is the source term which groups, the non-conservative terms, the gravi-
tational effects, the interfacial friction, and the interfacial heat transfer. Thus,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

pg
��

�x
+ �gx + Fdx

pg
��

�y
+ �gy + Fdy

pg
��

�z
+ �gz + Fdz

�ug · g + Fd · up + Qg

0

−pg
��

�x
+ (1 − �)gx − Fdx

−pg
��

�y
+ (1 − �)gy − Fdy

−pg
��

�z
+ (1 − �)gz − Fdz

(1 − �)up · g − Fd · up − Qg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Following the AUSM family of schemes [5, 14, 15], the flux vector is split into a convective
part and a pressure part, such that for the phase k

Fk = F (c)
k + F (p)

k
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where F (c)
k = ṁk�k , with the mass flow rate given by ṁk = �kMkck . Mk = ukn/ck is the mach

number, ck is the speed of sound, and

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

ukn

ukt1

ukt2

Hk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and F (p)
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

�k pk

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where pk includes intergranular effects in the particle case. n, t1 and t2, respectively, refer to the
normal and tangential directions in the local reference frame. Dropping the subscript k from the
equations, the numerical flux can be written as

F1/2 = F (c)
1/2 + F (p)

1/2

with F (c)
1/2 is the numerical convective flux through the interface s and F (p)

1/2 the numerical pressure
flux through the interface s.

For phase k, the numerical convective flux at the interface 1/2 is given by

F (c)
1/2 = ṁ1/2(uL, uR)�1/2(uL, uR)

where the left and right states are denoted by L (left) and R (right)

�1/2(uL, uR) =
{

�L if ṁ1/2�0

�R otherwise

The pressure flux is simply given by

F (p)
1/2 = (0, p1/2(uL, uR), 0, 0, 0)t

In this extension of the AUSM+up scheme, the interface variables ṁ1/2 and p1/2 are defined
for the gas phase as

ṁg,1/2 = cg1/2Mg1/2

{
�L�gL if Mg1/2 > 0

�R�gR otherwise
(20)

and for the particles as

ṁ p,1/2 = c1/2M1/2�p

{
(1 − �L) if Mp1/2 > 0

(1 − �R) otherwise
(21)

where Mk1/2 is based on polynomial functions of the Mach numbers (Mk) of left and right states.
Dropping the subscript k

M1/2 =M+
(4)(ML) + M−

(4)(MR) − Kp

fa
max(1 − �M̃2, 0)

pR − pL
pR + pL

(22)
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where 0�Kp�1 and ��1,

M̃2 = (u2L + u2R)

2
c21/2

M2
o = min(1,max(M̃2, M2∞))∈ [0, 1]
fa(Mo) = Mo(2 − Mo) ∈ [0, 1]

p1/2 =P+
(5)(ML)�L pL + P−

(5)(MR)�R pR

−KuP
+
(5)P

−
(5)(�L�L + �R�R)( fac1/2)(uR − uL) (23)

The definition of the polynomial functions M+
(4)(ML), M−

(4)(MR), P+
(5) and P−

(5) may be found in
Liou’s original work (e.g. [5]). It should be remarked that in this heavy-laden mixture approach,
pp,L and pp,R are given by

pp,L = pL + �L (24)

pp,R = pR + �R (25)

where � accounts for the particle–particle interaction in those approaches where the solid pressure
is defined by an expression similar to Equation (4). This term is defined in the following sections
depending on the approach.

In the case of dilute mixtures discussed in the next section, where the effect of particle–particle
interaction may be neglected, the same numerical scheme may be applied, regardless of the terms
that take it into account. The resulting model is a one-pressure model where p= pg = pp.

3.2.2. High-dilute mixtures. The system of equations for high-dilute dusty gas flows has a different
eigenstructure with respect to System (1). Although the gas sub-system is strictly hyperbolic, the
particle system of equations is a degenerate one, it has only one eigenvalue, the particle velocity,
u p with multiplicity 3, so the Jacobian matrix of the flux is not diagonalizable. In the finite volume
formulation for this model, the vector of conserved variables and the flux vector are given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�g

�gugx
�gugy
�gugz
�gEg

�

�u px

�u py

�u pz

�Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�gugx

�g(u
2
gx + p)

�gugxugy
�gugxugz
�gugx Hg

�u px

�u2px
�u pxu py

�u pxu pz

�u px Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�gugy
�gugyugx

�g(u
2
gy + p)

�gugyugz
�gugyHg

�u py

�u pyu px

�u2py
�u pyu pz

�u py Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�gugz
�gugzugx
�gugzugy

�g(u
2
gz + p)

�gugz Hg

�u pz

�u pzu px

�u pzu py

�u2pz
�u pz Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)
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In this approximation, S is the source term which groups gravitational effects interfacial friction
and interfacial heat transfer.

Different schemes have been applied in the existing literature to solve the system of equations (8).
Some authors such as Miura and Glass [16] or Saito [17] proposed random choice methods for
its solution assuming a linear distribution for the initial conditions, in order to avoid multivalued
solutions for the particle velocity. Other authors use Godunov methods such as Klemens and
Kosinski [18] and Klemens et al. [19] or Collins et al. [20] where a second-order Godunov
scheme with adaptive mesh refinement is applied. Saurel et al. solve the gas system of equations
by means of Van Leer’s scheme and the particle system via a donor-cell method which uses the
solution of a particular Riemann problem [21]. In a similar way, Daniel and Loraud also solve
the exact Riemann problem for the flux calculation [22]. Niu applies the AUSMD scheme to the
analysis of particulate flow [23]. A k−	 turbulent model is also included in the system of equations
considered. Aiming to solve some imperfections encountered in previous works [24], Abgrall and
Saurel introduce a new class of schemes which is able to converge to the correct solution in the
presence of shocks and provides a better estimation of the source terms [25]. They apply these
schemes to another interpretation of the already presented Baer–Nunziato model.

Gas phase: The AUSM+up scheme is also applied to the gas phase. As the void fraction has
been dropped from the system of equations, the flux vector coincides with the Euler flux. Thus
the application of this scheme is exactly the same as in the Liou’s original work [5]. Another
interesting AUSM approach for high-dilute flows can be found in the existing literature [23], in
which, Niu reformulates the gas speed of sound in order to overcome some problems found in the
cases in which particles are moving with low velocities. In spite of its good results, the AUSM+up
has been preferred in this paper as the results obtained have been quite satisfactory.

Solid phase: Due to the degenerate character of the solid system of equations, two options are
proposed:

Rusanov scheme: In this case, the numerical flux is computed using the following expression [26]:
Fj+1/2 = 1

2 [(FL + FR) − S+(UR −UL)] (27)

where the speed S+ is chosen such that

S+ = max{|u pL|, |u pR|} (28)

AUSM scheme: As there is no pressure term in the particle physical flux, the numerical flux
is purely convective. The approximation followed is equivalent to that formulated by Niu [23].
As the solid phase is considered incompressible and the solid speed of sound is constant, AUSM
fluxes are redefined in terms of a numerical particle velocity at the interface

Fj+1/2 = u̇ p1/2

{
�L if ṁ p1/2�0,

�R otherwise,
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�

�u pn

�u pt1

�u pt2

�Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(29)

where the numerical particle velocity is defined as

u p1/2 = 1
2 (u

+
pL + u−

pR) (30)
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and u±
p = 1

2 (u p ± |u p|). A version of the AUSM+ scheme under the previously mentioned con-
sideration of particle incompressibility was also developed. The results provided are, however,
somewhat oscillatory with respect to the version described and they have not been included for
reason of clarity.

3.3. Second-order approximation

A second-order scheme can be obtained by using the MUSCL-variable extrapolation strategy. In
the code developed, the following algorithm has been followed.

Prediction step: The primitive variables are calculated at a time step �t/2 by means of

Ṽ n+1/2
j = V n

j + A j
�V
�x

+ Bj
�V
�y

+ C j
�V
�z

(31)

This has been obtained by writing the homogeneous system of System (8) as

�U
�t

+ �F
�x

+ �F
�y

+ �F
�z

= 0 (32)

transforming it into

�V
�t

+ A
�V
�x

+ D
�V
�y

+ C
�V
�z

= 0 (33)

after doing some algebra. Matrices A, B and C stand for (�U/�V )−1�F/�V , (�U/�V )−1�G/�V
and (�U/�V )−1�H/�V , respectively.

Correction step: The previously calculated primitive variables are reconstructed in space by
means of

V̄ j = Ṽ j + (∇Ṽ ) j · (r − r j ) (34)

where r is the vector characterizing the position of the points considered in the reconstruction
process.

Conserved variable update: Finally, conserved variables are updated by means of

Un+1
j =Un

j − �t

|V |
N∑

s=1
T−1
s F(TsŪ )As (35)

where the numerical fluxes are obtained by any of the numerical schemes proposed prior to this by
using the previously calculated linearized primitive variables. Gradients have been approximated
by means of the method introduced by Beccantini and Paillère [27] and limited by using a version
of the Barth–Jespersen limiter, also used in this reference.

4. NUMERICAL RESULTS

Some numerical tests are studied with the aforementioned schemes. Despite the multidimensional
character of the development presented above, most of the problems studied are essentially 1D, as
they will allow us to check the behaviour of the schemes in the presence of discontinuities or rather
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strong gradients. The system of equations used to model dust and gas mixtures is quite similar
to that used for two-fluid and two-phase mixtures, this development takes advantage of previous
experiences in the application of advected upstream schemes to problems with gas and liquid
mixtures (i.e. [4, 28]). Problems with both heavy-laden and high-diluted mixtures are studied. The
high-dilute approach is used for problems with very high gas volume fractions, where particle–
particle interaction is neglected and only drag and heat transfer between the phases are taken into
account. All simulations are performed using the CAST3M code [29]. This is a multi-purpose finite
element code, developed at the CEA (French Atomic Commission). Its domains of application are
Structural Mechanics, Fluid Mechanics, Thermal Engineering and Electromagnetism. It is quite
flexible and allows the user to post-process the results. This is an open code, may be modified and
new code may also be added.

4.1. Heavy-laden mixtures

Two tests are studied. The system of equations solved and the interaction terms included in them
follow the original references. The first one is a four-equation model studied by Combe and Hérard
[9, 30] and the second is a six-equation model analysed by Rogue et al. [12].

4.1.1. Four-equation model. Combe and Hérard studied a four-equation model for laden mixtures
of gas and particles, following the model studied by Gidaspow [1]. In this approach, neither the
particle volume fraction transport equation nor the energy equations of System (1) are consid-
ered. Particle interaction is taken into account by writing the particle pressure as the sum of the
gas pressure and the so-called intergranular pressure �. This results in the following system of
equations:

�
�t

(��g) + ∇ · (��gug) = 0

�
�t

(��gug) + ∇ · (��gug ⊗ ug + �p) = p∇� + ��gg + 
nv
g + 
v

g

�
�t

((1 − �)�p) + ∇ · ((1 − �)�pup) = 0

�
�t

((1 − �)�pup) + ∇ · ((1 − �)�pup ⊗ up + (1 − �)(p + �))

= −p∇� + ��pg + 
nv
p + 
v

p (36)

where p= p(�g) is the mean pressure within the gas phase given by the equation of state at
constant entropy

p= ���
g (37)

where � and � are two characteristic constants of the gas.
� is the intergranular pressure given by

�= 2
3�p(q

2
p)0(�p)

5/3g(�p) (38)
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α =0.5
ρg =1 kg/m3

α =0.4
ρg =0.3 kg/m3

Figure 1. Shock tube test specifications with zero velocities.

α =0.5
ρg =1 kg/m3

α =0.5
ρg =1 kg/m3

Figure 2. Shock tube test specifications with opposite velocities.

�p is constant as the solid phase is considered incompressible:

g(�p) =
[
1 + 2(1 + ec)�p

[1 − �p/�max] 53 �max

]
exp

⎡
⎣4�max(1 + ec)

( 152 )�max − 3

(
1 − �p

�max

)1− 5
2�max

⎤
⎦

�max = 0.64 maximum particle compactness rate, assuming they are spherical, ec = 1, (q2c )0 = 15/2
(it is a constant of dimension (ms−1)2 [30]) and �p is the particle volume fraction is �p = 1− �.

The speeds of sound of the phases are given by

c2g = dpg
d�g

, c2p = d�

d�p
(39)

Two shock tube problems are studied (Figures 1 and 2). In both cases, the particle density is
taken as constant and the particle diameter dp = 10−4 m. The perfect gas equation of state is given
by �= 105 Pa and � = 7/5. The first problem is a shock tube with drag whose left and right states
are characterized by the following values for the conserved variables (Figure 5):

UL =

⎡
⎢⎢⎢⎢⎢⎣

��g = 0.5

��gug = 0

(1 − �)�p = 1250

(1 − �)�pu p = 0

⎤
⎥⎥⎥⎥⎥⎦ , UR =

⎡
⎢⎢⎢⎢⎢⎣

��g = 0.12

��gug = 0

(1 − �)�p = 1500

(1 − �)�pu p = 0

⎤
⎥⎥⎥⎥⎥⎦ (40)

and the value of the particle density is �p = 2500 kg/m3.
The second problem is given by the following values of the conserved variables. In this case,

the value of the particle density is �p = 2500 kg/m3.

UL =

⎡
⎢⎢⎢⎢⎢⎣

��g = 0.5

��gug = 350

(1 − �)�p = 1250

(1 − �)�pu p = 6250

⎤
⎥⎥⎥⎥⎥⎦ , UR =

⎡
⎢⎢⎢⎢⎢⎣

��g = 0.5

��gug =−350

(1 − �)�p = 1250

(1 − �)�pu p =−6250

⎤
⎥⎥⎥⎥⎥⎦ (41)
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Figure 3. Shock tube with drag. From top to bottom, left to right: gas density, pressure, gas velocity,
particle velocity and particle volume fraction.

This differs from the former since the phases have opposite velocities which will lead to an increase
of the particle concentration in the middle of the tube.

For these tests, a simplified version of the particle intergranular pressure defined in Equation (38)
is used:

�p�= �(q2p)0
�p

1 − �p/�max
(42)
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In this case, the speeds of sound are given by

c2g = dpg
d�g

= ����−1
g , c2p = d�

d�p
= �2max�(q2p)0

(�max − �p)2
(43)

�= 2
3 , �max = 0.64 and (q2p)0 = 5.

The drag force is the only phase interaction term considered in the calculations and the model
used is given by

Fd =−�(1 − �)KT (ug − up) (44)

where

KT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

4

Cd

dp
�g�

−2.7|ug − up| if �p<0.2

�g

�dp

(
(1 − �)

150

Re
+ 1.75

)
|ug − up| otherwise

(45)

with Re= �dp|ug − up|/�g and

Cd =

⎧⎪⎨
⎪⎩

24

Re
(1 + 0.15Re0.7) if Re<1000

0.44 otherwise

The gas kinematic viscosity is �g = 10−5 m2/s.
These tests are studied by applying the already described AUSM+up formulation for dense

mixtures. The calculations have been performed using a 1D mesh of 1500 cells and a CFL-like pa-
rameter of 0.9. In Figure 3, the results corresponding to the shock tube with drag have been gathered.
Similarly, the numerical results corresponding to the shock tube with opposite velocities have been
displayed in Figure 4. These results are quite similar to those reported by Combe and Hérard [9, 30],
there are some differences as the exact time at which the data were represented was not reported in
these references. Figures 3 and 4 correspond to t = 2 and 1.5ms, respectively. In the first test, the ve-
locity and void fraction of the particles are not affected by the rarefaction and the shock wave in the
gas phase. Instead, gas density and velocity are very influenced by the particle existence compared
with what occurs when we have got only gas. In the second test, kinetic energy is converted into
pressure within each phase in the central region. As it is expected, it results in an increase of the void
fraction.

4.1.2. Six-equation model. Rogue et al. studied the fluidization of different particle beds both by
experimental and analytical methods [12]. The model considered in their work is characterized by
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the following system of equations:

��g�g

�t
+ ∇(�g�gug) = 0

��g�gug

�t
+ ∇(�g�gu

2
g + �g pg) = p∇(�g) + Fd

��g�gEg

�t
+ ∇(�g�gugHg) = Q + Fdu p

��p�p

�t
+ ∇(�p�pu p) = 0

��p�pu p

�t
+ ∇(�p�pu

2
p + �p pp) = −p∇�p − Fd

��p�pEp

�t
+ ∇(�p�pu p(Ep + pp/�p))+ = −Q − Fdu p

(46)

it is a one-pressure model which is in fact the result of considering only a weak compaction in
System 1. This is pp = pg + T̃ (with T̃ the particle interaction tensor). The gas phase is modelled
as a perfect gas and the solid phase is considered to be incompressible as before. The subscript g
stands for the gas phase and p for the solid one as usual �g + �p = 1, Q is the convective heat
transfer between the phases and Fd is the interfacial friction force. This test was also studied
by Abgrall and Saurel [25]. The numerical results shown by these authors match quite well the
experimental results.

In this section, the fluidization effect of a shock induced on a particle bed is numerically
studied and compared to the experimental results obtained by Rogue et al. In essence, the
problem consists of a particle bed situated inside a vertical tube in which the flow is driven
upwards by a shock. In the experimental study, the authors analysed different particle beds
which ranged from one particle to compact beds, characterized by different particle volume
fractions. Furthermore, they tested several types of particles (nylon and glass) under the action
of distinct shocks (Mach numbers from 1.3 to 1.5). The geometry specifications are shown in
Figure 5.

In the present case, aimed at validating this development, a test with glass is carried out, the
shock considered is given by a Mach number of 1.3 and the initial conditions are:

• Driven part: a density and a pressure of �g = 1.2 kg/m3 and p= 105 Pa are, respectively,
considered. The particle bed is characterized by a gas volume fraction of 0.35.

• Driver part: By taking into account the above values and by solving Rankin–Hugoniot jump
conditions for a shock velocity characterized by aMach number of 1.3, the following values are
obtained in the driven part of the tube: �g = 1.82 kg/m3, p= 180 500 Pa and ug = 151.1m/s.
Besides, for the glass a density of �p = 2500 kg/m3 and a particle diameter of dp = 1.5mm
is set.
The interfacial friction is characterized by the following drag force expression:

Fdg = −3

4
Cd

�g

dp
(1 − �g)|ug − up|(ug − up) (47)
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Figure 4. Shock tube without drag and opposite velocities. From top to bottom, left to right: gas density,
pressure, gas velocity, particle velocity and particle volume fraction.

Cd = 0.6 is a constant drag coefficient and cm = 951.36 J/(kgK) is the specific heat of glass
at constant volume which is set following the problem definition in [12]. Considering these
values, the particle concentration in the bed is � = (1 − �g)�p = 682.5 kg/m3.
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Figure 5. Fluidization particle bed test. Geometrical specifications.

The interfacial heat transfer is expressed by

Q = �dp(1 − �)g Re
0.7Pr0.33(Tp − Tg) (48)

where Pr is the Prandtl number of the gas phase and the Reynolds number is given by Re=
(�g|ug − up|dp)/�g . The interaction term is given by

T̃ = �pc
2
s0

(
1 − �s0

�p

)
(49)

which is supposed to be dependent only on the compaction rate. The speed of sound expression
is obtained following [11]

c2p = 1

�p

d

d�p
[�p(pg + T̃ )] = c2s0 + p

�p
(50)

where cs0=200m/s has been estimated considering similar experiments and �s0=0.35 in this case.
The results obtained at the two gauge positions and for a particle bed of 2 cm in thickness are

gathered in Figure 6. They are quite similar to those shown by Rogue et al. [12] although they
differ somewhat from the experimental results, referred to as ‘pexp’ in the figures. When the shock
meets the particle bed, the particles get fluidized and, later a shock with a higher pressure than
the initial one is reflected towards the bottom and a low pressure one is transmitted through the
particle bed. The reflected shock is lower than in the experiment. On the other hand, the transmitted
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Figure 6. Gauge pressure at two different positions from the particle bed (bed thickness 2mm).

2 m

dusty gas

Figure 7. Shock tube problem geometry.

shock is stronger which makes the gas flow faster through the bed. Perhaps, this is due to certain
numerical diffusion and the fact that the grid is not being modelled. A sensitivity study has been
carried out varying the time step and the grid points but no special improvement has been obtained.
The differences encountered between the experimental and the calculated results might be due to
the simplified model used to characterize the particle–particle interaction.

4.2. High-dilute mixtures

In this section, two test cases are studied. One corresponds to a shock tube introduced by Miura
and Glass [16] whilst the other is a version of the problem studied by Klemens et al. [31], where
a rarefaction wave mobilizes a dust layer situated on the bottom of a vertical tube.

4.2.1. Shock tube test. It consists of a 2m long horizontal tube divided into two parts by
a membrane (Figure 7). This separates a left zone (driver part) containing only air at high
pressure, and a right zone (driven part), which has a mixture of particles and air with lower
pressure (8).
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Initial conditions are given by the following left and right states:

VL =

⎡
⎢⎢⎢⎢⎢⎣

p= 106 Pa

ug = u p = 0m/s

Tg = Tp = 300K

�= 0 kg/m3

⎤
⎥⎥⎥⎥⎥⎦ , VL =

⎡
⎢⎢⎢⎢⎢⎣

p= 105 Pa

ug = u p = 0m/s

Tg = Tp = 300K

� = �g(10
5 Pa, 300K) kg/m3

⎤
⎥⎥⎥⎥⎥⎦ (51)

In this test, the gas is considered to be perfect, viscous friction and conduction heat transfer
effects are neglected, and particles are assumed to be spherical with uniform size as is commented
above. The interaction between the phases is characterized by a drag force given by

Fd =− �

m
D (52)

and an interfacial heat transfer term

Qg =− �

m
Q (53)

which takes into account the convection heat transfer between the gas and the particles, in such a
way that

D = 1
8�d

2
p�g(ug − u p)|ug − u p|Cd (54)

Q = �dp�cpgPr
−1(Tg − Tp)Nu (55)

with the particle diameter denoted by dp and the drag coefficient, Cd given by

Cd = 0.48 + 28Re−0.85 (56)

the Nusselt number, Nu, by

Nu= 2 + 0.6Pr1/3Re1/2 (57)

and the Reynolds number, Re, is based on the particle diameter dp and the relative velocity between
the phases:

Re= �g|ug − u p|
�g

(58)

Prandtl number is given by Pr= (�gcp)/kg and the gas dynamic viscosity by means of �g = 1.71×
10−5(Tg/273)0.77 Ns/m2. kg is the thermal conductivity of the gas phase and m is the particle
mass assuming it spherical. These closure expressions follow Otterman and Levinet’s work [32].

In order to test the ability of the schemes to capture a shock wave, several studies are carried out.
Firstly, grid independence is shown varying the number of cells considered from 100 to 10 000.
The distribution of some representative variables along the tube are depicted in Figures 8 and 9.
These are pressure, gas density, particle concentration, gas and particle temperature, and gas and
particle velocities. All these results correspond to numerical calculations carried out by means of
the AUSM+up scheme for the gas and the Rusanov scheme for the particles.

In Figure 10, a mesh of 1000 cells in the main axis is used. Here, the results corresponding
to the test described above are compared to those obtained considering the same problem but
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Figure 8. Shock tube problem: from left to right, top to bottom: pressure, gas
density, and particle concentration.

with only gas. This single-phase results have been obtained by employing the AUSM+up scheme
for the Euler equations in this shock problem with the specifications given above. They show
the differences encountered between the mixture and the single-phase behaviours. These results
are essentially the same as those shown by the referenced authors [16, 17]. Particle concentration
increases very slowly behind the shock reaching a maximum and dropping behind the contact
discontinuity. Gas velocity is lower than that in the single-phase case due to the gas–particle
interaction. Gas loses energy which results in a shock deceleration. It produces compression waves
behind the shock wave and a consequent increase in pressure. We notice that the rarefaction is
reduced and temperature does not decrease as much as in the single-phase case. The oscillations
avoided by the numerical scheme proposed by Saito do not appears either in the case of the
numerical scheme proposed in this paper.

A comparison of the results obtained by means of the first-order and second-order version of
the scheme has also been depicted in Figure 11.

4.2.2. Dust mobilization due to rarefaction waves. This test case was experimentally studied
by Medvedev et al. [33] and studied numerically by Klemens et al. [31] and Klemens and
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Figure 9. Shock tube problem: from left to right, top to bottom: gas and particle velocity,
and gas an particle temperature.

Kosinski [18]. It simulates the dispersion of a dust layer due to the action of rarefaction waves. It
consists of a long tube which has a 50mm dust deposit which is subjected to high pressure on its
left side (Figure 12).

On the upper part of the tube, there is a low-pressure region, with an arbitrary length which is
separated from the first part by a membrane. Initial conditions are ambient temperature in both
parts (t = 25◦C), a 2 bar pressure inside the bottom section and 1 bar in the other. The phases
are supposed initially at rest. The other parameters that complete the problem definition are the
particle concentration �= 760 kg/m3, its density �p = 1300 kg/m3 and its diameter dp = 10−5 m.
Air is considered as a perfect gas and the solid phase is incompressible as mentioned above.

The relationships chosen to close the system of equations are those used by the authors in the
references mentioned above which correspond to the correlations proposed by Crowe et al. [6].
The drag interaction between the phases is modelled by means of

Fdg =−n
�d2p
Cd

4�g|ug − up|(ug − up) (59)

where n is the number of particles per unit volume given by n = dp(1 − �g)/mp and Cd is the
drag coefficient. Although it was not defined in the previous references, the Schiller and Naumann
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Figure 10. Shock tube problem: from left to right, top to bottom: pressure,
density, temperature and velocity.

correlation proposed in [6] has been considered:

Cd = (1 + 0.15Re0.687) (60)

The heat exchanged through the interface is evaluated with the following expression:

Q = n�d2p
gNu

dp
(Tg − Ts) (61)

where the Nusselt number is defined as

Nu= 2 + 0.6Pr1/3Re1/2 (62)

The results shown in Figure 13 have been obtained by means of the AUSM+up scheme for the
gas phase and the modified AUSM scheme for the particles. They correspond to the distribution
of the particle concentration along the tube for different instants, t = 0, 2, 4, 6, 8, and 10ms. The
numerical results shown match quite well with those reported by Klemens et al. [31]. In addition,
the evolution of the particle concentration is displayed in Figure 14 at different positions: 6.25,
12.5, 18.75 and 25mm over the dust layer.
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Figure 11. Shock tube problem. Comparison between first order (red) and second order (black). From left
to right, top to bottom: pressure, density, temperature and velocity.
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Figure 12. Dust mobilization problem. Geometry specifications, all in mm.
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Figure 13. Dust concentration distribution at different times. High dilute mixture model.
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Figure 15. Dust concentration distribution at different times. Dense mixture model.

Figure 16. Geometry considered in the analysis.
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Figure 17. Gas velocity distribution inside the reservoir at different times, t = (0, 1, 2, 3, 4, 5, 6, 7)× 10−2 s.
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Figure 18. Logarithmic representation of the particle concentration distribution inside 2D ITER
cross-section at different times, t = (0, 1, 2, 3, 4, 5, 6, 7)× 10−2 s.
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For the sake of comparison, this test is also studied with the dense flow model. The results
obtained are shown in Figure 15. The interfacial friction and the particle–particle interaction
is modelled by using the same correlations as those used in the fluidization test proposed by
Rogue et al. The role played by the interaction terms is appreciated quite well when compared
with the previous results, the dust mobilization is somewhat slower in this case than in the
first one because of the strong interaction between the particles which slows down the front
propagation in the particle concentration. The calculations have been performed by means of the
AUSM+up scheme. A mesh of 2000 points in the y-axis direction has been used for all the cases
studied.

The influence of the rarefaction wave is clearly seen as it mobilizes the particle as soon as it
reaches the dust layer. Regarding the numerical method performance in the high-dilute case, the
modified AUSM and the Rusanov schemes applied to the particles give similar results, although
only the AUSM results have been included for this test.

4.2.3. Mobilization of a dust layer in simplified 2D ITER cross-section. A study of dust mobiliza-
tion inside a simplified 2D ITER cross-section has been carried out as preliminary calculations
(it does not include the divertor part and the lower port). The geometry considered is shown in
Figure 16. A layer of dust have supposed to be deposited on the lower part of the inner surface.
After opening a breach in the middle point of the equatorial port, the dust mobilization takes place
due to the action of the induced shock wave.

Constant stagnation conditions have been considered along the calculations, p0 = 105 Pa and
T0 = 298K. Initially, a thin layer of particles of 1-cm thick is assumed to be at the bottom of the
cross-section which is characterized by an arbitrary concentration of � = 80 kg/m3. The particles
are characterized by the following parameters:

�p = 2267 kg/m3.
cm = 8.53 J/(molK) (specific heat at constant volume, (S)).
dp = 0.042× 10−6 m (T ).

Initially, pressure and temperature inside the vessel are assumed to be constant and equal to
p= 5 Pa and T = T0. The breach diameter is dbreach = 10 cm.
The evolution of the gas velocity at different times is shown in Figure 17. It displays how a

shock wave is transmitted at the beginning of the pressurization process which is responsible for
the mobilization process.

The evolution of the particle concentration has been depicted in Figure 18 at different times.

5. CONCLUSIONS

This paper has dealt with multiphase mixtures of gas and particles. Two different models have been
studied, one for dense flows and another for high-dilute mixtures. A finite volume approach for
multidimensional problems in unstructured grids has been posed, and several numerical schemes
have been extended to analyse this type of mixtures. The AUSM+up scheme has been extended
to dense mixtures and in the case of high-dilute mixtures it has only been applied to the gas
phase. The Rusanov scheme and a modified version of the AUSM+ have been proposed for
the solid phase for high-dilute mixtures. Different numerical benchmarks have shown that the
schemes behave quite well in the analysis of problems involving discontinuities. Several shock
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tube problems have been analysed and both the mobilization of a particle layer by a rarefaction
wave and the fluidization of a particle bed have been examined and compared with experimental
results. In general, the results match qualitatively quite well when comparing with other authors’
results. Some discrepancies have been observed between numerical and experimental results in
the fluidization test, therefore, perhaps the correlations used to model the physical phenomena
taking place in the mixture need further improvements. Despite the fact that most of the tests are
numerical tests which originally lack of some specification parameters, they have only provided a
good view of the capabilities of the numerical schemes proposed and qualitatively demonstrate their
good behaviour in the characterization of discontinuities and their easy adaptability to different
flow models. The foregoing work has been carried out in the context of the ITER project. In our
opinion, and in order to validate this numerical methods for their use suitably, new experiments
must be performed. The authors expect that new experimental data will be available in the near
future for this purpose. The addition of more realistic closure laws will also contribute to a more
complete model (i.e. turbulence, lift forces, adhesion-entrainment models and so on).

ACKNOWLEDGEMENTS

The authors would like to thank to Ms Juan Mari Belchı́ and Ms Neasa Conroy for helping them with
their English.

REFERENCES

1. Gidaspow D. Hydrodynamics of fluidisation and heat transfer. Supercomputer modeling. Applied Mechanics
Review 1983; 39:1–23.

2. Baer MR, Nunziato JW. A two-phase mixture theory for the deflagration-to -detonation transition (DDT) in
reactive materials. International Journal of Multiphase Flow 1986; 12:861–889.

3. Bdzil JB, Menikoff R, Son SF, Kapila AK, Stewart DS. Two-phase modelling of deflagration-to-detonation
transition in granular materials: a critical examination of modelling issues. Physics of Fluids 1999; 11:378–402.

4. Garcı́a Cascales JR, Paillère H. Application of AUSM schemes to multi-dimensional compressible two-phase
flow problems. Nuclear Engineering and Design 2006; 236:1225–1239.

5. Liou MS. A sequel to AUSM, Part II: AUSM + up for all speeds. Journal of Computational Physics 2006;
214:137–170.

6. Crowe CT, Sommerfeld M, Tsuji Y. Multiphase Flows With Droplets and Particles. CRC Press LLC:
Boca Raton, FL, U.S.A., 1998.

7. Tsuo YP, Gidaspow D. Computation of flow patterns in circulating fluidized beds. AIChE Journal 1990; 36:
885–896.

8. Harris SE, Crighton DG. Solitons, solitary waves and voidage disturbances in gas-fluidized beds. Journal of
Fluid Mechanics 1994; 266:243–276.

9. Combe L, Hérard JM. Un schéma volumes-finis pour la simulation d’un modèle bi-fluide d’écoulements
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